爱情岛论坛
学术报告[2025]056号
(高水平大学建设系列报告1078号)
报告题目: Lagrangian Intersection, Symplectic Reduction and Kirwan Map
报告人:谢颖 (南方科技大学)
报告时间:2025年6月24日 3:40-4:40
讲座地点:汇文楼1420
报告内容:For a smooth holomorphic symplectic variety $X$ with a Hamiltonian action by a linearly reductive group $G$, the symplectic quotient $X//G$ is a 0-shifted symplectic stack, and $G$-invariant Lagrangians $C's$ induce Lagrangians in $X//G$.
In this talk, I will present a structure result for the derived intersection of two cleanly intersecting $G$-invariant Lagrangians $C_1, C_2$, and this leads to an isomorphism between the equivariant Ext groups of $C_1$ by $C_2$ in $X// G$ and the equivariant cohomology of $C_1\cap C_2$ under certain mild conditions on determinant of the normal bundle and properness of $C_1\cap C_2$. If the group action is linearized, then the functorial restriction from these Ext groups to those of their semi-stable GIT quotients is equivariant to Kirwan's map. This is a joint work with Conan Leung and Tony Yau.
报告人简介:谢颖,博士毕业于香港中文大学,现于南方科技大学从事博士后研究,研究方向为代数几何,论文发表在J. Eur. Math. Soc.等知名学术期刊。
欢迎师生参加!
邀请人: 丁聪
爱情岛论坛
2025年6月24日